资讯详情
长沙 西门子 6ES7134-4JB01-0AB0
发布者:yls198741  发布时间:2018-05-22 12:46:18

西门子 6ES7134-4JB01-0AB0   西门子 6ES7134-4JB01-0AB0     西门子 6ES7134-4JB01-0AB0 




SIMATIC DP,电子模块 用于 ET 200S,2 AI TC Standard; 15mm 结构宽度,15 位+符号位 +/-80mV; 特性曲线线性化,用于 热电偶,型号: 色,E、J,K,L,N,R,S,T 每通道循环时间 65ms 利用 LED 集中报错(集中报错)


产品
商品编号(市售编号) 6ES7134-4JB01-0AB0
产品说明 SIMATIC DP,电子模块 用于 ET 200S,2 AI TC Standard; 15mm 结构宽度,15 位+符号位 +/-80mV; 特性曲线线性化,用于 热电偶,型号: 色,E、J,K,L,N,R,S,T 每通道循环时间 65ms 利用 LED 集中报错(集中报错)
产品家族 模拟量电子模块
产品生命周期 (PLM) PM400:产品宣布退市 / 将逐步停止供货
PLM 有效日期 产品停产时间:2016.10.01
价格数据
价格组 / 总部价格组 TG / 2AP
列表价(不含增值税) 显示价格
您的单价(不含增值税) 显示价格
金属系数
交付信息
出口管制规定 AL : N / ECCN : N
工厂生产时间 10 天
净重 (Kg) 0.045 Kg
产品尺寸 (W x L X H) 未提供
包装尺寸 6.30 x 9.20 x 2.30
包装尺寸单位的测量 CM
数量单位 1 件
包装数量 1
其他产品信息
EAN 4025515076551
UPC 662643400687
商品代码 85389091
LKZ_FDB/ CatalogID ST9.76
产品组 2301
原产国 中国
Compliance with the substance restrictions according to RoHS directive RoHS 合规开始日期: 2009.11.25
产品类别 A: 问题无关,即刻重复使用
电气和电子设备使用后的收回义务类别 没有电气和电子设备使用后回收的义务
分类
 
版本 分类
eClass 5.1 27-24-26-01
eClass 6 27-24-26-01
eClass 7.1 27-24-26-01
eClass 8 27-24-26-01
eClass 9 27-24-26-01
eClass 9.1 27-24-26-01
ETIM 4 EC001596
ETIM 5 EC001596
ETIM 6 EC001596
IDEA 4 3562
UNSPSC 14 32-15-17-05
UNSPSC 15 32-15-17-05

ET200S 1 步进模板使用入门
ET200S 1 5V/204KHz 步进模板入门

1. 模板介绍
1.1 总览
ET200S 1 步进模板输出脉冲来控制步进电机 ,输出脉冲的数量决定步进电机的运动距离,输出脉冲的频率决定步进电机的速度。
模板订货号: 6ES7138-4DC00-0AB0
1.2 模板参数

图. 1: 步进电机模板

  • 1 通道,可控制1个步进电机
  • 数字量输入的参考点开关
  • 外部停止或者外部脉冲使能数字输入
  • 脉冲和方向信号时RS422的差分输出模式
  • 最大输出频率: 204kHZ
  • 最大脉冲数: 1048575
  • 4 LED 状态指示灯
  • 2 操作模式:寻找参考点和增量模式

2. 模板接线

图. 2: 步进模板接线图

  • 端子1和5:脉冲差分信号
  • 端子4和8:差分输出的方向信号
  • 端子2和3:外部停止或者外部脉冲使能数字量输入ID。(功能选择见 4.2 )
  • 端子6和7:数字量输入参考点开关

3. 硬件配置
步进模板可以安装在ET 200S接口模板或者 ET200S CPU后面。
本文使用 IM151-7 CPU 为例。

表 1: 软件和硬件配置

图. 3: ET200S 站的配置图
4. 硬件和参数设置
4.1 硬件配置
1) 根据图. 2 和图. 3完成ET200S的接线
2) 打开STEP7,创建一个新项目,并插入一个S7-300站
3) 从硬件目录中选择IM151-7 CPU直接拖拽到站配置窗口

图. 4: 插入IM151-7 CPU
4) 依次在4槽和5槽插入电源模板 PM-E DC24 和步进模块

图. 5: 硬件配置
4.2 模板参数配置

图. 6: 步进模块参数接口
4.2.1 模板参数说明
1) 组诊断:组诊断
2) 基准频率:基准频率,以Hz为单位,标识Fb
3) 增益 n: 增益系数 n,值范围 1-255. 此增益系数决定启动/停止频率 Fss,并且计算公式为: Fss=Fb×n
4) 时间 i: 时间系数 i, 值范围 1-255. 该时间系数以Hz/ms决定加速和减速,计算公式为: a = Fb ×R / (i×0.128 ms)
5)功能 DI: 数字量输入DI 功能可选,可以被组态为外部脉冲输入或者外部停止信号,缺省是外部脉冲且已使能。
6) 外部 Stop, 限位 Stop: 外部 stop, 信号类型停止开关. 接触器触点是常闭信号,以确保该接触器信号,缺省是读取常闭信号。
4.2.2 本文所例参数设置如下
本例参数配置见图. 6.
1) 没有激活组诊断
2) 基准频率 4Hz
3) 乘法系数 1, 启动/停止频率 4Hz
4) 时间系数 1, 加速/ 减速 31.25 Hz/ms
5) 使能外部输入脉冲
6) 外部输入停止和限位信号为常闭类型
5. 编程
5.1 模板输入/输出地址分配
与其它ET200S功能块类似,1STEP步进模板也通过直接读写I/O地址来对模板进行控制和访问的。
反馈信号 (输入), 占用 8 字节. 如表 2 输入地址分配所示。
控制信号 (输出), 占用 8 字节. 如表 3 输出地址分配所示。
有关输入和输出变量分配的详细信息请参阅 ET200S 位置控制和操作手册。链接如下:
/cs/document/9260790?caller=view&lc=en-WW

表 2: 输入地址分配

表 3: 输出地址分配

5.2 项目例程
为了更好的实现按位,字节或字对模板进行读写,在梯形图中使用MOVE指令接收输入数据PIB272-PIB279 到MB10-MB17发送MB20-MB27到PQB272-PQB279,对1STEP模板的读写访问均通过MB地址来进行。 
1STEP模板地址分配见图. 5 

图. 7: 例程编程
6. 模式描述和举例

6.1 Search-for-reference-point 模式
通过执行search-for-reference-point 模式来同步轴, 即.在机械零位和电气零位之间创建连接关系。 
6.1.1 Search-for-reference-point 模式
Mode=1
参考点按照常开信号访问
搜寻参考点输出频率 Fss 和 Fa。
Fss 启动停止频率,见章节 4.2.1相关描述。
Fa 输出频率: Fa = Fb ×G × R
Fb: 基准频率. 在1STEP 模板参数中设置。 见章节 4.2.1相关描述。
增益 G: 增益系数 G. 值范围: 1-255, 参见模板输出地址字节: 0。
减少 R:减少系数 R. 模板输出地址字节4的第7位信号,参见表 3.模板输出地址4.7=0, R=1. 模板输出地址 4.7=0, R=0.1.

图. 8: 搜寻参考点
6.1.2 search-for-reference-point模式例程
本例模式见图. 8, viz. 搜寻 CW 方向.

  1. 通过变量表写输出控制变量:
     
    图. 9: 参考点模式控制变量
    1) M24.0=1 search-for-reference-point 模式 = 1
    2) M25.0=1, M25.1=1: 因为之前的模板参数配置中的限位开关是常闭输入模式,在软件限位信号触发前为信号输入参见章节 4.2.2.
    3) M25.2=0: 没有激活软件脉冲使能信号,因之前的模板参数配置中DI已经作为外部脉冲信号使能,内部软件脉冲使能信号在此时不会使用,参见章节 4.2.2.
    4) 置位M24.2, 然后复位M24.4 (下降沿有效), 启动search-for-reference-point模式. 输出脉冲频率为 Fa.
    5) MB20=1, M24.7=0: 增益系数 G = 1, 减少系数 R = 1, 频率 :
    Fa = Fb ×G × R=4Hz×1×1=4Hz。
     
  2. 通过变量表读输入状态:

    图. 10: 参考点模式变量表
    1) M15.2=1: 触发外部脉冲使能信号
    2) M15.0 = 1: 驱动使能
    3) 之后 search-for-reference point启动,  M14.0=1 位置被激活,  M15.7=1 位置被执行. 等待参考点开关信号 M15.1.
    4) M15.1=1: 参考点信号到达, 寻找参考点已完成 M14.4=1,同步操作完成, M14.2=1,位置到达, M15.3=1, 寻找参考点结束。

6.2 增量模式
增量模式是 1STEP 的主要操作模式. 该操作模式可控制步进电机移动按照设定速度移动到一个指定位置。
6.2.1 增量模式描述
Mode=0
输出脉冲的数量决定步进电机的移动距离,最大值脉冲值为 1048575.
输出脉冲频率决定步进电机速度。
在增量模式下输出频率: Fss, Fa
方向信号作为启动信号。
注意: 步进电机实际位移取决于脉冲数实际速度取决于脉冲频率,这不是在1STEP模板中设置的。
6.2.2 增量模式例程

  1. 通过变量表写输出控制信号:

    图. 11: 在增量模式下的控制变量
    1) M24.0=0 增量模式 = 0
    2) M25.0=1、M25.1=1: 因之前的已经配置中限位开关信号为常闭输入模式,在软件限位信号触发前为信号输入参见章节 4.2.2。
    3) MB20=1, M24.7=0:增益系数 G = 1, 减少系数 R = 1, 输出频率Fa 
    Fa = Fb ×G × R=4Hz×1×1=4Hz.
    4) 脉冲输出数: 通过MB21-23的20 个位信号来存储脉冲数 ,最大值为 0xFFFFF=1048575
    MB21 输出脉冲数 (位 16 到位19)
    MB22 输出脉冲数 (位 8 到位15)
     MB23 输出脉冲数 (位 0 到位 7)
    MB21的位 20 到位 23 没有使用
    本例中,分配的值为 0 x 100,即. 256 个脉冲。
    5) 置位 M24.4, 之后复位 M24.4 (下降沿有效), 启动增量模式 触发CW方向信号开始运动。
  2. 通过变量表读输入信号:

初学者入门

1.1 必要条件
> 必须有一个S7-300 站,带电源模块、CPU314-2 DP 和SM 338(订货号:6ES7 338-4BC01-0AB0);
> STEP 7(> 4.0.2.1)必须被正确安装在编程器上;
> 编程器已经按照实际硬件设备,正确建立了一个S7-300 站;
> 编程器已经通过编程介质(如:CP5511、CP5512、CP55611 或者PC Adapte,外加通讯电缆“MPI 电缆”、“RS232 电缆”)正确连接到S7-300 站的CPU 编程口上。

1.2 端子连接图和框图

布线规则:
在对模板进行接线时, 应注意以下事项:
1. 编码器电源的接地与CPU 的接地不隔离。因此,应将SM 338(M)的引脚2 以低阻抗连接到CPU 的接地;
2. 编码器导线(引脚3-14)必须屏蔽,最好使用双绞电缆。并将任一端的屏蔽层进行支承;
3. 为了支承SM 338 的屏蔽层,应使用支承元件(订货号:6ES7 390-5AA00-0AA0);
4. 如果超出编码器的最大输出电流(900 mA), 必须连接一个外部电源。

1.3 SM338参数配置
你可以使用STEP 7 对SM 338 进行参数赋值。但必须在CPU 处于“STOP“ 模式下进行。当你设定完所有的参数后,应将参数从编程器下载到CPU 中。当CPU 从“STOP “模式转换为“RUN“ 模式时,CPU 即可将参数传送到SM 338。不能通过用户程序对参数重新赋值。

SM 338 的参数概述:
SM 338 的可编程参数概述及其缺省值,见下表。(如果你没有使用STEP 7 进行参数赋值,将使用缺省设置。) 注意:

参数 数值范围 缺省值
使能诊断中断“OB82  / 使能参数,所有的3 个通道均
工作
SSI 绝对值编码器类型: /13 /21 /25  无:编码器输入被关掉; 
     
位报文帧长度   SSI 位置检测的数据传输率。
     
代码类型 格雷码/二进制码 注意电缆长度和波特率之间的关系。
     
传输速率    
    单稳时间是两个SSI 报文桢之间的时间间隔。
单稳时间 125kHz / 250kHz / 500kHz / 1MHz   
    所编程的单稳时间必须大于绝对值编码器的单稳时间。
标准化:   由于标准化,编码器的数值将在地址区内右移。不相关的地址区将被去除
  0 – 12
位置  
  Feb 92
步进/分辨率  
FREEZE 功能 关闭/ 0 / 1  数字量输入的上升沿信号,触发编码数值的保持

注意:
> 传输速率和单稳时间会影响非等时模式中绝对值编码器值的精度;
> 在等时模式中传输速率和单稳时间将影响FREEZE 功能的精度(参见编码器制造商的技术规范);
> 所编程的单稳时间必须大于绝对值编码器的单稳时间;
> 绝对值编码器的单稳时间将使用以下限制:

(1/传输速率) < “绝对值编码器的单稳时间” < 64μs + 2 x (1/ 传输速率)

1.4 使能FREEZE 功能
用FREEZE 功能可以“ 保持“SM 338 当前的编码值。FREEZE 功能连接到SM 338 的数字量输入“DI 0“ 和“DI 1“。

通过“DI 0“ 和“DI 1“的沿变化(上升沿)触发“保持“功能。通过判断位31(输入地址) 的状态(0 和1),识别被保持的编码值。一个数字量输入可以“保持”1 个、2 个或3 个编码器值。

必须使能FREEZE 功能,也就是说用STEP 7 进行参数赋值。(如图)

直到FREEZE 功能结束前,将始终保持编码器值,并可以作为结果的一个功能进行评
估。

结束FREEZE 功能可以对每个编码器输入结束FREEZE 功能。可以用STEP 7 运行“T PQBxyz“ ,在用户程序中对0、1 和2 位置位来响应该功能。响应后,相应的编码器值的31 位被删除,并重新刷新。编码器值又可以再次被保持。一旦模板的输出地址的响应位被“复位” ,则编码器值可以再次被保持。

在等时模式中,在To 时间段进行响应。从该时间段,通过数字量输出可以再次保持编码器数值。

1.5 地址分配

1.5.1编码值的数据区
SM 338 的输入和输出都编址为初始模板地址。在使用STEP 7 进行SM 338 组态过程中,可以确定输入和输出地址。

1.5.2输入地址

编码器输入 输入地址(组态)+地址偏移量
0 初始模板地址
1 初始模板地址“+ 4 字节地址偏移量
2 初始模板地址“+ 8 字节地址偏移量

 

1.5.3编码器输入的数据双字结构:
每个编码器输入的数据双字具有如下结构:

1.5.4输出地址

1.5.5读取数据区

你可以在用户程序中, 使用STEP 7 运行L PID“xyz“(或者LAD 的“Move“指令)读取数据区。

1.6 程序编制,编码值的存取和保存功能使用实例
假设你想在编码器输入处读取,并且评估编码值。“初始模板地址“ 为“256“。OB1 程序如下:

之后,你可以继续从位存储地址区MD 100、MD 104 和MD 108 读取编码值。编码值保存在存储双字的位0 到位30 中。

1.7 诊断中断程序编制本节将阐述SM 338 的诊断中断行为。
SM 338 可以触发诊断中断。有关下述OB 和SFC,参见STEP 7 的在线帮助, 其中阐述更为详细。

1.7.1使能诊断中断
没有预置中断,换言之,即如果没有相应的参数赋值,中断将被禁止。应使用STEP 7 赋值中断使能的参数。

1.7.2诊断中断OB82 程序编制
如果你已使能诊断中断,当前的错误事件(故障的初始发生)和排除故障事件( 故障排除后的报文)都可通过中断来报告。

CPU 可以中断用户程序的执行,处理诊断中断块(OB 82)。在用户程序中,你可以调用OB 82 中的SFC 51 或SFC 59,以从模板中获得更为详细的诊断信息。

诊断信息在OB 82 退出之前都是一致的。当OB 82 退出时,将对模板作出诊断中断响应。

OB82 程序如下:

2 订货号
6ES7 338-4BC01-0AB0

3 特点
位置检测模板SM 338 具有以下特性:
> 连接最多3 个绝对值编码器(SSI),2 个数字量输入(用于保留编码器数值)
> 提供位置编码器数值, 用于STEP 7 软件程序的进一步处理;
> 可在用户程序中处理SM 338 采集的编码值;
> 等时模式;
> 24 VDC 额定输入电压;
> 与CPU 隔离;

4 所支持的编码器类型
位置检测模板SM 338 支持以下编码器类型:
> 带13 位报文帧长度的编码器;
> 带21 位报文帧长度的编码器;
> 带25 位报文帧长度的编码器;
> 编码器值的持续时间取决于传输和处理方法;
> 单稳时间超过64μs 的编码器不能用于SM 338 。

5 所支持的数据格式
支持格雷码和二进制码数据格式。

6 等时模式

6.1 硬件需求
> CPU 需要支持时钟功能;
> DP Master 需要支持“ 等时模式“;
> DP 接口模块(IM153-x)需要支持“等时模式“ 。

6.2 特性
> 根据系统参数的设置, 位置检测模板SM 338 既可以工作在“非等时模式“,也可以工作在“等时模式“;
> 在“等时模式“下,“DP Master“和“位置检测模板SM 338“之间,可以在“PROFIBUS DP” 通讯循环中,同步进行数据交换。所有“位置检测模板SM 338 “的16 个信号输入字节,保持一致、协调;
> 如果,当前“PROFIBUS DP“ 通讯循环中,由于“等时模式“失败造成其他的错误。那么, 在下一个“PROFIBUS DP “通讯循环中,“位置检测模板SM 338”可以自动恢复“等时模式“,而没有任何的错误反应;
> 如果“等时模式“失败,“位置检测模板SM 338“的16 个信号输入字节,将无法自动更新。

7 检测编码值
绝对值编码器以报文桢的形式向SM 338 传送编码值。通过SM 338 启动报文桢的传送。
> “非等时模式“的编码值检测可以随时进行;
> 在“等时模式“的编码值将在PROFIBUS DP 循环中的Ti 时间内同步进行检测。

7.1 “非等时模式“编码值检测
> SM 338 在每个参数化的单元时间间隔内执行报文桢的传送。
> SM 338 在刷新速率的循环中,与自由运行的报文桢异步地处理检测到的编码值。

7.2 “等时模式“编码值检测
> 当在DP 主站系统中的等距离总线循环被激活,以及DP 从站与DP 循环同步时, 将自动执行同步编码值的检测;
> SM 338 在每个PROFIBUS DP 循环的Ti 时间执行报文桢的传送;
> SM 338 以PROFIBUS DP 循环的时钟速率处理所传送的编码值。

8 格雷码与二进制码的转换
当设置为格雷码时,绝对值编码器以格雷码形式提供的编码值转换为二进制码。当设置为二进制码时,所发送的编码值将不进行转换。

9 传送的编码器值和规格化
被传送的编码器值,包括绝对值编码器的编码器位置。根据所使用的编码器,位于编码器位置之前和之后的其它位、连同编码器位置一起传送。

为了让SM 338 识别编码器位置, 应指定:
> 位置(0 至12);
> 步/分辨率。

编码器值标准化举例:
例如,当使用单圈编码器时,2(的9 次方幂)步=512 步/分辨率(分辨率/360°)。
在STEP 7 中进行下列参数设置
> 编码器绝对值:13
> 位标准化:4 个位置
> 步/分辨率:512

10 SM 338 的错误诊断

SM 338 可以提供所有诊断报文,而无需其它操作。

10.1 在STEP 7 中诊断报文后的动作
每个诊断报文都会致使以下动作:

> 诊断报文被输入到模板的诊断中, 并传送到CPU;
> 模板中的SF 指示灯亮;
> 如果你已使用STEP 7 对“使能诊断中断“进行了编程, 将触发一个诊断中断,并调用OB 82。

10.2 读出诊断报文

你可以通过用户程序中的SFC,读出详细的诊断报文(参见附录“信号模板的诊断数据”)。在模板诊断中,你可以查看STEP 7 中的故障原因(参见STEP 7 的在线帮助)。

10.3 SF 指示灯指示的诊断报文
> SM 338 通过SF 指示灯(组故障指示灯)指示错误。只要SM 338 一触发诊断报文,SF 指示灯就亮。当所有错误被排除之后,指示灯就熄灭。
> 如果出现外部故障(传感器电源短路),组故障(SF)指示灯也亮,与CPU 的运行状态无关(如果通电)。
> 在启动时以及SM 338 自测试时,SF 指示灯都亮一下。

10.4 SM 338;POS-INPUT 的诊断报文

下表概述了SM 338 的诊断报文

诊断报文 LED  诊断监测
模板有问题 SF  模板
内部故障 SF  模板
外部故障 SF  模板
通道错误 SF  模板
外部辅助电源故障 SF  模板
模板没有参数化 SF  模板
参数错误 SF  模板
通道信息可用 SF  模板
触发监测 SF  模板
通道错误 SF  通道(编码器输入)
组态/参数赋值出错 SF  通道(编码器输入)
外部通道错误(编码器错误) SF  通道(编码器输入)

10.5 故障原因及排除

诊断报文 LED  诊断监测
模板故障 模板检测到一个错误  
内部故障 模板检测到PLC 中的错误  
外部故障 模板检测到PLC 外的错误  
通道错误 某些通道有故障  
外部辅助电源故障 没有模板的电源电压L+  馈入模板的电源电压L+ 
模板没有参数化 模板需要使用系统缺省参数,或者你规定的参数。 通电后报文排队,直到CPU 参数传送完毕。根据需要参数化模板。
参数错误 一组或者多组参数不合理 重新赋值模板参数
存在通道信息 通道错误; 或者模板可以提供其他通道信息  
看门狗断开 临时的高电磁干扰 排除干扰
通道错误 在编码器输入处检测到模板通道的错误  
组态/参数赋值出错 传送给模板的参数非法 重新赋值模板参数
外部通道错误(编码器错误) 编码器电缆断线,没有连接编码器电缆或编码器故障 检查所连接的编码器

 

  西门子 6ES7134-4JB01-0AB0  西门子 6ES7134-4JB01-0AB0  西门子 6ES7134-4JB01-0AB0  

版权声明:工控网转载作品均注明出处,本网未注明出处和转载的,是出于传递更多信息之目的,并不意味 着赞同其观点或证实其内容的真实性。如转载作品侵犯作者署名权,或有其他诸如版权、肖像权、知识产权等方面的伤害,并非本网故意为之,在接到相关权利人通知后将立即加以更正。联系电话:0571-87774297。
今日最新资讯
热门资讯
0571-87774297