西门子6 ES7195-7HC00-0XA0 西门子6 ES7195-7HC00-0XA0 西门子6 ES7195-7HC00-0XA0
SIMATIC DP,总线模块,针对 ET 200M 用于收纳一个 80mm 宽的 外围模块 针对插拔功能
长沙玥励自动化设备有限公司(西门子系统集成商)长期销售西门子S7-200/300/400/1200PLC、数控系统、变频器、人机界面、触摸屏、伺服、电机、西门子电缆等,并可提供西门子维修服务,欢迎来电垂询
联系人:姚善雷 (销售经理)
手机 :13874941405
QQ : 3464463681
地址:长沙市岳麓区雷锋大道468号金科世界城16-3303室
产品 | ||||||||||||||||||||||||||||||||||||||||
商品编号(市售编号) | 6ES7195-7HC00-0XA0 | |||||||||||||||||||||||||||||||||||||||
产品说明 | SIMATIC DP,总线模块,针对 ET 200M 用于收纳一个 80mm 宽的 外围模块 针对插拔功能 | |||||||||||||||||||||||||||||||||||||||
产品家族 | IM 153-1/153-2 | |||||||||||||||||||||||||||||||||||||||
产品生命周期 (PLM) | PM300:有效产品 | |||||||||||||||||||||||||||||||||||||||
价格数据 | ||||||||||||||||||||||||||||||||||||||||
价格组 / 总部价格组 | AL / 250 | |||||||||||||||||||||||||||||||||||||||
列表价(不含增值税) | 显示价格 | |||||||||||||||||||||||||||||||||||||||
您的单价(不含增值税) | 显示价格 | |||||||||||||||||||||||||||||||||||||||
金属系数 | 无 | |||||||||||||||||||||||||||||||||||||||
交付信息 | ||||||||||||||||||||||||||||||||||||||||
出口管制规定 | AL : N / ECCN : N | |||||||||||||||||||||||||||||||||||||||
工厂生产时间 | 1 天 | |||||||||||||||||||||||||||||||||||||||
净重 (Kg) | 0.117 Kg | |||||||||||||||||||||||||||||||||||||||
产品尺寸 (W x L X H) | 未提供 | |||||||||||||||||||||||||||||||||||||||
包装尺寸 | 10.20 x 10.40 x 7.00 | |||||||||||||||||||||||||||||||||||||||
包装尺寸单位的测量 | CM | |||||||||||||||||||||||||||||||||||||||
数量单位 | 1 件 | |||||||||||||||||||||||||||||||||||||||
包装数量 | 1 | |||||||||||||||||||||||||||||||||||||||
其他产品信息 | ||||||||||||||||||||||||||||||||||||||||
EAN | 4025515060215 | |||||||||||||||||||||||||||||||||||||||
UPC | 662643225297 | |||||||||||||||||||||||||||||||||||||||
商品代码 | 85389091 | |||||||||||||||||||||||||||||||||||||||
LKZ_FDB/ CatalogID | ST76 | |||||||||||||||||||||||||||||||||||||||
产品组 | 4056 | |||||||||||||||||||||||||||||||||||||||
原产国 | 德国 | |||||||||||||||||||||||||||||||||||||||
Compliance with the substance restrictions according to RoHS directive | RoHS 合规开始日期: 2000.12.31 | |||||||||||||||||||||||||||||||||||||||
产品类别 | A: 问题无关,即刻重复使用 | |||||||||||||||||||||||||||||||||||||||
电气和电子设备使用后的收回义务类别 | 没有电气和电子设备使用后回收的义务 | |||||||||||||||||||||||||||||||||||||||
分类 | ||||||||||||||||||||||||||||||||||||||||
|
.液压伺服系统简介
液压伺服系统以其响应速度快(相对于机械系统)、负载刚度大、控制功率大等独特的优点在工业控制中得到了广泛的应用。而电液伺服系统是通过使用电液伺服阀,将小功率的电信号转换为大功率的液压动力,从而实现了一些重型机械设备的伺服控制。
1.1 液压伺服系统的组成
液压伺服系统主要由以下几部分组成(如图 1):
图1. 液压伺服系统
使用TCPU控制液压伺服系统时,TCPU就是该系统中的控制器;TCPU可以通过脉冲或者模拟量输出来控制比例换向阀的开度和方向从而控制液压缸的运动方向和速度;测量反馈系统可以由设备编码器或者模拟量信号通过IM174接口模板或模拟量输入模板将信号反馈给TCPU。
1.2 液压伺服系统与电气伺服系统区别
控制电气伺服系统时,执行机构(通常为伺服电机)能够根据速度给定改变运行速度,响应快,动态特性好,给定与输出之间呈线性比例关系;而液压伺服系统由其液压油的物理特性决定了其响应速度和动态特性都较低,而且在液压伺服系统启动、停止以及换向时都会出现大滞后性,这样就导致输出给定与执行速度之间的关系并不是线形的(如图 2),这样,一旦我们还以控制线性电气轴的模型来控制非线性液压轴时,速度会非常不稳定,而且位置闭环会不停的修正由速度不稳定所带来的位置偏差,这时液压执行机构就会来回跳动或者抖动,造成定位误差大甚至损坏机械设备。所以我们在控制液压伺服系统时就应该先了解该系统的给定与输出之间的关系,确定补偿曲线来保证执行机构平稳运行。
图 2. 给定与实际速度的关系
在 TCPU 中,补偿曲线可以由多种方法来确定,例如 S7T Config 中的 Trace 工具,根据输出不同的给定值和实际的速度值来确定差补点,将差补点的值以表格的方式添入到 Cam Disk (凸轮盘)中。
本文主要介绍使用自动获得补偿曲线功能块 FB 520“GetCharacteristics” 和 FB 521“WriteCamData”来确定差补曲线。
2.系统结构及软硬件要求
2.1 系统结构
本系统的给定和反馈均使用高性能ET200M带AI/AO模板来实现(如图 3):
图 3. 系统结构图
2.2 硬件及软件要求
名称 | 数量 | 订货号 |
CPU 315T-2 DP | 1 | 6ES7315-6TG10-0AB0 Or 6ES7315-6TH13-0AB |
Firmware: V2.6 | ||
Or CPU 317T-2 DP | 1 | 6ES7317-6TJ10-0AB0 Or 6ES7317-6TK13-0AB0 |
Firmware: V2.6 | ||
Micro Memory Card 4MB | 1 | 6ES7953-8LM20-0AA0 |
Interface module IM174 | 1 | 6ES7174-0AA00-0AA0 |
Or ET200M / ET200S | 1 | 6ES7 153-2BA02-0XB0 or 6ES7 151-1BA02-0AB0 |
STEP 7 | 1 | 6ES7810-4CC08-0YA7 Version: V5.4 以上 |
S7 Technology | 1 | 6ES7864-1CC41-0YX0 Version: V4.1 以上 |
表 1. 硬件及软件要求
3.项目配置过程:
3.1 硬件组态
在 SIMATIC 管理器中创建新的项目并添加一个 SIMATIC 300 站点。根据实际硬件配置硬件组态,本例中使用模拟量输入输出作为给定和反馈信号。组态模拟量输入输出并分配 I/O 地址(图 4);
图 4. 硬件组态
3.2 在 S7T Config 中配置液压轴
在 S7T Config 的浏览器中,双击“插入轴”(Insert axis)(图 5)
图 5. 插入液压轴
在“常规”(General) 选项卡中,选择“速度控制”(Speed control) 和“定位”(Positioning) 控制然后打开轴向导;
在轴类型话框中,选择“液压”(Hydraulic) 轴类型。 将阀类型定义为“Q 阀”(Q valve)(图 6)。
图 6. 选择轴的类型
配置完液压轴的物理单位及模度后,进入到输入输出的配置界面,并选择其输出方式模拟量输出模板(图7 );
图 7. 选择输出方式
选择输出设备为模拟量输出模块,填入相应参数:
点击继续进入到位置反馈参数界面,填入使用的模拟量输入的地址(图 8):
图 8. 选择反馈方式
点击继续,进入到位置反馈参数分配界面(图 9):
图 9. 反馈参数分配
相关输入参数:
分配完所有参数,单击“完成”(Finish) 退出轴组态对话框。
3.3 建立补偿曲线凸轮盘
根据前文所提到的,液压伺服系统需要确定一条补偿曲线来线性化输出变量与液压轴速度之间的关系。在 TCPU 中通过使用凸轮盘(Cam Disk)工艺对象来确定补偿曲线,液压伺服轴的补偿曲线反映了液压比例阀输出给定与液压轴速度之间的对应关系。由于本文使用功能块 FB 520 “GetCharacteristics” 和 FB 521“WriteCamData” 来自动获得补偿曲线,所以需要建立两个凸轮盘(Cam Disk)来确定补偿曲线。其中第一个凸轮盘是用来测量、寻找补偿点,而测量后的结果会写入到另外一个凸轮盘,这个被写入的凸轮盘也就是当前液压伺服系统的最终补偿曲线。
在 CAMS 下面建立两个凸轮盘,分别取名为:Cam_Profile 与 Cam_Reference,并填入两个差补点描绘一条输出给定与执行速度间的参考关系曲线,如图 10:
图 10. 建立补偿曲线凸轮盘
做好以上工作后,将 S7T-Config 存盘编译,并将组态好的轴和凸轮盘等工艺对象生成相应的工艺对象数据块,并下载到 TCPU。本例中工艺对象数据块对应为:
4.编写用户程序
4.1 使用 FB 520 和 FB 521 自动获得补偿曲线
FB 520 “GetCharacteristics” 和 FB 521“WriteCamData”两个功能块并没有在 S7-Tech 库中提供,所以需要到以下链接下载例子项目,并将项目中的FB520和FB521复制到自己的项目中来。
下载链接:27731588
4.2 FB 520 和 FB 521 的功能介绍
4.2.1 FB 520 “GetCharacteristics”
通过该功能块,系统能够执行测量并得到当前液压系统的补偿曲线,并将相应的Cam Disk激活为当前液压系统的Profile。其内部调用结构如图 11:
图 11. FB 520 结构
4.2.2 FB 521 “WriteCamData”
该功能块能够将测量的补偿曲线写入到相应的Cam Disk中。其内部调用结构如图 12:
图 12. FB 521 结构
由这两个功能块的结构图可以看出,其内部调用了很多S7-Tech里面的功能块,所以需要将这些功能块复制到当前的项目中来。而且,可以看到在FB520功能块内部已经调用了FB521,所以只要保证FB 521在项目中存在就可以了,不需要在程序中单独调用。表 2 为FB520,FB521所使用到的S7-Tech功能块:
PLC-Open FB | 功能 |
FB 402 “MC_Reset” | 复位可能出现的错误 |
FB 405 “MC_Halt” | 停止轴运动 |
FB 407 “MC_WriteParameter” | 写系统参数 |
FB 414 “MC_MoveVelocity” | 使轴运动,并可改变其运行速度 |
FB 434 “MC_CamClear” | 删除一个凸轮盘中的所有插补点 |
FB 435 “MC_CamSectorAdd” | 插入一个新的插补点到凸轮盘中 |
FB 436 “MC_CamInterpolate” | 修改凸轮盘的插补点 |
FB 439 “MC_SetCharacteristics” | 激活一个凸轮曲线作为液压阀的特性曲线 |
表 2. 使用的 S7-Tech 功能块
4.2.3 FB520的管脚及其定义(图 13 及表 3):
图 13. FB 520 管脚定义
名称 | 含义 |
输入参数 | |
Axis | 液压轴工艺DB号 |
CamReference | 执行测试时的参考凸轮盘的工艺DB号 |
CamProfil | 最终要写入的凸轮盘的工艺DB号 |
Enable | 使能 |
Mode | 执行模式 |
maxDistance | 执行测试时的最大移动距离 |
JogPos | 正向点动 |
JogNeg | 负向点动 |
JogVelocity | 点动速度 |
输出参数 | |
Done | 测量完成 |
Busy | 忙 |
Error | 有错误 |
ErrorID | 错误代码 |
ErrorSource | 错误源 |
State | 当前状态 |
ActiveCam | 当前执行的凸轮盘的工艺DB号 |
表 3. FB 520 管脚定义
4.3 在OB1中调用FB520(图 14)
图 14. 在 OB1 中调用 FB 520
使用步骤:
4.4 FB 520 “GetCharacteristics” 的测量原理(图 15)
图 15. FB 520 的测量原理
4.5 FB 520 “GetCharacteristics” 补偿曲线的写入过程(图 16):
图 16. 补偿曲线的写入过程
4.6 FB 520 “GetCharacteristics” 执行时的基本步骤
4.7 FB 520 “GetCharacteristics” 的 42 种执行状态(图 17):
图 17:FB 520 的42种执行状态(State)
5.执行结果
在FB520执行自动检测之后,可以通过在线的方式察看测量出来的补偿曲线,如图 18:
.必备条件
Step7 编程软件 PLC 中具有Profibus-DP 通讯口 Profibus 通讯电缆 Profibus 总线联结器 Drive 中有Profibus 通讯模板.如: MASTER DRIVE 的CBP2 通讯模板, 标准变频器的Profibus 通讯模板
2.硬件组态
1. 将MASTERDRIVES CBP/CBP2 加入组态
2. Profibus 地址(6)
3. 将MICROMASTER 4 加入组态
4. Profibus 地址(7)
3.选择数据格式
1. MASTERDRIVE 中可供选择的PP0 类型
2. I/Q address
1. MICROMASTER 4 中可供选择的数据格式
2. I/Q address
4.Step 7 中的编程
创建数据块DB1 说明:
1.在Step7 中对PKW (参数区)读写参数时调用SFC14 和 SFC15
2. SFC14(“DPRD_DAT”)用于读Profibus 从站的数据
3. SFC15(“DPWR_DAT”)用于将数据写入Profibus 从站
4. W#16#100(即256)是硬件组态时PKW 的起始地址
程序举例1(读参数r015)
注:PKW ,IND 的详细说明见附录
1. W#16#100(即256)是硬件组态时PKW 的起始地址
2.将从站数据读入DB1.DBX0.0 开始的8 个字节(P#DB1.DBX0.0 BYTE 8)
PKE -> DB1.DBW0
IND -> DB1.DBW2
PWE1 -> DB1.DBW4 参数值的高字位
PWE2 -> DB1.DBW6 参数值的低字位
3.将DB1.DBX28.0 开始的8 个字节写入从站(P#DB1.DBX28.0 BYTE 8)
DB1.DBW28 -> PKE
DB1.DBW30 -> IND
参数值的高字位 DB1.DBW32 -> PWE1
参数值的低字位 DB1.DBW34 -> PWE2
注:PKW ,IND 的详细说明见附录
程序举例2 (读参数P401.2)
注:PKW ,IND 的详细说明见附录
1.W#16#100(即256)是硬件组态时PKW 的起始地址
2.将从站数据读入DB1.DBX0.0 开始的8 个字节(P#DB1.DBX0.0 BYTE 8)
PKE -> DB1.DBW0
IND -> DB1.DBW2
PWE1 -> DB1.DBW4 参数值的高字位
PWE2 -> DB1.DBW6 参数值的低字位
3. 将DB1.DBX28.0 开始的8 个字节写入从站(P#DB1.DBX28.0 BYTE 8)
DB1.DBW28 -> PKE
DB1.DBW30 -> IND
参数值的高字位 DB1.DBW32 -> PWE1
参数值的低字位 DB1.DBW34 -> PWE2
注:PKW ,IND 的详细说明见附录
程序举例3 (读参数U001.2)
注:PKW ,IND 的详细说明见附录
1. W#16#100(即256)是硬件组态时PKW 的起始地址
2.将从站数据读入DB1.DBX0.0 开始的8 个字节(P#DB1.DBX0.0 BYTE 8)
PKE -> DB1.DBW0
IND -> DB1.DBW2
PWE1 -> DB1.DBW4 参数值的高字位
PWE2 -> DB1.DBW6 参数值的低字位
3. 将DB1.DBX28.0 开始的8 个字节写入从站(P#DB1.DBX28.0 BYTE 8)
DB1.DBW28 ->PKE
DB1.DBW30 -> IND
参数值的高字位 DB1.DBW32 -> PWE1
参数值的低字位 DB1.DBW34 -> PWE2注:PKW ,IND 的详细说明见附录
程序举例4(写参数P401.1)
注:PKW ,IND 的详细说明见附录
1. W#16#100( 即256)是硬件组态时PKW 的起始地址
2. 将从站数据读入DB1.DBX0.0 开始的8 个字节(P#DB1.DBX0.0 BYTE 8)
PKE -> DB1.DBW0
IND -> DB1.DBW2
PWE1 -> DB1.DBW4 参数值的高字位
PWE2 -> DB1.DBW6 参数值的低字位
3->将DB1.DBX28.0 开始的8 个字节写入从站(P#DB1.DBX28.0 BYTE 8)
DB1.DBW28 -> PKE
DB1.DBW30 -> IND
参数值的高字位 DB1.DBW32 -> PWE1
参数值的低字位 DB1.DBW34 -> PWE2
注:PKW ,IND 的详细说明见附录
对PZD (过程数据)的读写
说明:
1. 在Step7 中对PZD (过程数据)读写参数时调用SFC14 和SFC15
2. SFC14(“DPRD_DAT”)用于读Profibus 从站的数据
3. SFC15(“DPWR_DAT”)用于将数据写入Profibus 从站
4. W#16#108(即264)是硬件组态时PZD 的起始地址
5. 对特殊结构的PZD 可用PQW , PIW 进行读写
程序举例5: 对PPO5 中10PZD 的读写
DB1 中与PZD 相对应的数据字
1.在P918 中设置Profibus 地址,必须与Step 7 中设置相同.地址不能重复.
2. 控制字第十位置“1”. PZD1 = W#16#X4XX
附录1
西门子6 ES7195-7HC00-0XA0 西门子6 ES7195-7HC00-0XA0 西门子6 ES7195-7HC00-0XA0