DS3-S3/11N-D24K1迪普马DUPLOMATIC电磁阀,桩机用电磁阀,武汉百士自动化设备有限公司专注于欧美品牌液压、气动、工控自动化备件销售,质量保障,价格优惠;销售热线:15307180902 ,联系人:雷青。联系电话:027-87680708-606。热诚欢迎新老客户咨询购买!
电磁阀之所以归划于自动化仪表行业中的执行器部分,虽外表与其他-些手动阀相似,甚至略显粗糙,但内部结构却十分精细,与一般手动阀门有着本质的区别。打个简单的比喻来说,普通手动阀的开关完全靠人工用力的大小来操作,而电磁阀则完全靠自身的功能达到控制目的,而非人力所为再者电磁阀区别于其他阀门的是因为内部结构不同,所以不同的工作介质不能通用一种阀门,一旦确定介质种类而选定的产品则不能与不同介质混用,否则会导致电磁阀失灵或损坏。
一、DB/DBW型先导溢流阀
1.结构和工作原理
DB型阀是先导控制式的溢流阀; DBW型阀是先导控制式的电磁溢阀。DB
型阀是用来控制液压系统的压力; DBW型阀也可以控制液压系统的压力,并且能在任意时刻使系统卸荷。
DB型阀主要是由先导阀和主阀组成。DBW型阀是由电磁换向阀、先导阀和主阀组成。
DB型溢流阀:
阀腔的压力油作用在主阀芯下端的同时,通过阻尼器和通道作用在主阀芯上端和先导阀的锥阀上。当系统压力超过弹簧的调定值时,锥阀被打开。同时主阀芯上端的压力油通过阻尼器、通道、弹簧腔及通道流回B腔(控制油内排型)或通过外排口流回油箱(控制油外排型)。这样,当压力油通过阻尼器时在主阀芯上产生了一个压力差,主阀芯在这个压差的作用下打开,这样在调定的工作压力下压力油从A腔流到B腔(即卸荷)。
DBW型电磁溢流阀:
此阀工作原理与DB型阀相同,只是可通过安装在先导阀上的电磁换向阀使系统在任意时刻卸荷。
DB/DBW型阀均设有控制油内部供油道和内部排油道控制油外供口和外排口。这样就可根据控制油供给和排出的不同形式的组合内供内排、外供内排、内供外排和外供外排4种型式。
2.溢流阀常见故障及排除
溢流阀在使用中,常见的故障有噪声、振动、阀芯径向卡紧和调压失灵等。
(一)噪声和振动
液压装置中容易产生噪声的元件一般认为是泵和阀,阀中又以溢流阀和电磁换向阀等为主。产生噪声的因素很多。溢流阀的噪声有流速声和机械声二种。流速声中主要由油液振动、空穴以及液压冲击等原因产生的噪声。机械声中主要由.阀中零件的撞击和磨擦等原因产生的噪声。
(1)压力不均匀引起的噪声
先导型溢流阀的导阀部分是一个易振部位如图3所示。在高压情况下溢流时,导阀的轴向开口很小,仅0.003~0.006厘米。过流面积很小,流速很高,可达200米/秒,易引起压力分布不均匀,使锥阀径向力不平衡而产生振动。另外锥阀和锥阀座加工时产生的椭圆度、导阀口的脏物粘住及调压弹簧变形等,也会引起锥阀的振动。所以一般认为导阀是发生噪声的振源部位。由于有弹性元件(弹簧)和运动质量(锥阀)的存在,构成了一个产生振荡的条件,而导阀前腔又起了一个共振腔的作用,所以锥阀发生振动后易引起整个阀的共振而发出噪声,发生噪声时一般多伴随有剧烈的压力跳动。
(2)空穴产生的噪声
当由于各种原因,空气被吸入油液中,或者在油液压力低于大气压时,溶解在油液中的部分空气就会析出形成气泡,这些气泡在低压区时体积较大,当随油液流到高压区时,受到压缩,体积突然变小或气泡消失,反之,如在高压区时体积本来较小,而当流到低压区时,体积突然增大,油中气泡体积这种急速改变的现象。气泡体积的突然改变会产生噪声,又由于这一过程发生在瞬间,将引起局部液压冲击而产生振动。先导型溢流阀的导阀口和主阀口,油液流速和压力的变化很大,很容易出现空穴现象,由此而产生噪声和振动。
(3)液压冲击产生的噪声
先导型溢流阀在卸荷时,会因液压回路的压力急骤下降而发生压力冲击噪声。愈是高压大容量的工作条件,这种冲击噪声愈大,这是由于溢流阀的卸荷时间很短而产生液压冲击所致在卸荷时,由于油流速急剧变化,引起压力突变,造成压力波的冲击。压力波是一个小的冲击波,本身产生的噪声很小,但随油液传到系统中,如果同任何一个机械零件发生共振,就可能加大振动和增强噪声。所以在发生液压冲击噪声时,-般多伴有系统振动。
(4)机械噪声
先导型溢流阀发出的机械噪声,一般来自零件的撞击和由于加工误差等产生的零件磨擦。在先导型溢流阀发出的噪声中,有时会有机械性的高频振动声,一般称它为自激振动声。这是主阀和导阀因高频振动而发生的声音。它的发生率与回油管道的配置、流量、压力、油温(粘度)等因素有关。-般情况下,管道口径小、流量少、压力高、油液粘度低,自激振动发生率就高。
减小或消除先导型溢流阀噪声和振动的措施,一般是在导阀部分加置消振元件。
消振套一般固定在导阀前腔,即共振腔内,不能自由活动。在消振套上都设有各种阻尼孔,以增加阻尼来消除震动。另外,由于共振腔中增加了零件,使共振腔的容积减小,油液在负压时刚度增加,根据刚度大的元件不易发生共振的原理,就能减少发生共振的可能性。
消振垫一般与共振腔活动配合,能自由运动。消振垫正反面都有一条节流槽,油液在流动时能产生阻尼作用,以改变原来的流动情况。由于消振垫的加入,增加了一个振动元件,扰乱了原来的共振频率。共振腔增加了消振垫,同样减少了容积,增加了油液受压时的刚度,以减少发生共振的可能性。
在消振螺堵上设有蓄气小孔和节流边,蓄气小孔中因留有空气,空气在受压时压缩,压缩空气具有吸振作用,相当于一个微型吸振器。小孔中空气压缩时,油液充入,膨胀时,油液压出,这样就增加了一个附加流动,以改变原来的流动情况。故也能减小或消除噪声和振动。
另外,如果益流阀本身的装配或使用权用不当,也都会造成振动,产生噪声。如三节同心式溢流阀,装配时三节同心配合不当,使用时流量过大或过小,锥阀的不正常磨损等。在这种情况下,应认真检查调整,或更换零件。
(二)阀芯径向卡紧
因加工精度的影响,造成主阀芯径向卡紧,使主阀开启不上压或主阀关闭不卸压,另因污染造成径向卡紧。
(三)调压失灵
溢流阀在使用中有时会出现调压失灵现象。先导型溢流阀调压失灵现象有二种情况:一种是调节调压手轮建立不起压力,或压力达不到额定数值;另一种调节手轮压力不下降,甚至不断升压。出现调压失灵,除阀芯因种种原因造成径向卡紧外,还有下列一些原因:
一是主阀体阻尼器堵塞,
所以主阀变成了一个弹簧力很小的直动型溢流阀,在进油腔压力很低的情况下,主阀就打开溢流,系统就建立不起压力。
压力达不 到额定值的原因,是调压弹簧变形或选用错误,调压弹簧压缩行程不够,阀的内泄漏过大,或导阀部分锥阀过度磨损等。
第二是阻尼器(3)堵塞,油压传递不到锥阀上,导阀就失去了支主阀压力的调节作用。阻尼器(小孔)堵塞后,在任何压力下锥阀都不会打开溢流油液,阀内始终无油液流动,主阀上下腔压力一直相等,由于主阀芯上端环形承压面积大于下端环形承压面积,所以主阀也始终关闭,不会溢流,主阀压力随负载增加而上升。当执行机构停止工作时,系统压力就会无限升高。除这些原因以外,尚需检查外控口是否堵住,锥阀安装是否良好等。
(四)其它故障
溢流阀在装配或使用中,由于“O”形密封圈、组合密封圈的损坏,或者安装螺钉、管接头的松动,都可能造成不应有的外泄漏。
如果锥阀或主阀芯磨损过大,或者密封面接触不良,还将造成内泄漏过大,甚至影响正常工作。
电磁溢流阀常见的故障有先导电磁阀工作失灵、主阀调压失灵和卸荷时的冲击噪声等。后者可通过调节加置的缓冲器来减少或消除。如不带缓冲器,则可在主阀溢流口加一背压阀。(压力一 般调至5kgf/cm2左右,即0.5MPa)
DS3-S3/11N-D24K1迪普马DUPLOMATIC电磁阀
迪普马MD1D系列
MD1D-S3/50-110V
MD1D-S4/50-110V
MD1D-S7/50-110V
MD1D-S8/50-110V
MD1D-S9/50-110V
MD1D-S10/50-110V
MD1D-S11/50-110V
MD1D-S4/55-110V
MD1D-S5/55-110V
MD1D-S6/55-110V
MD1D-S7/55-110V
MD1D-S8/55-110V
MD1D-S9/55-110V
MD1D-S1/50-24V
MD1D-TA/50-24V
MD1D-TC/50-24V
MD1D-RK/50-24V
MD1D-S1/55-24V
MD1D-TA/55-24V
MD1D-TC/55-24V
MD1D-RK/55-24V
MD1D-S1/50-110V
MD1D-TA/50-110V
MD1D-RK/55-110V
MD1D-S2/50-24V
MD1D-S3/50-24V
MD1D-S4/50-24V
MD1D-S5/50-24V
MD1D-S6/50-24V
MD1D-S7/50-24V
MD1D-S2/55-24V
MD1D-S3/55-24V
MD1D-S4/55-24V
MD1D-S5/55-24V
MD1D-S6/55-24V
MD1D-S7/55-24V
MD1D-S8/55-24V
MD1D-S2/50-110V
MD1D-S10/55-110V
MD1D-S11/55-110V
MD1D-S18/55-110V
MD1D-S2/50
MD1D-S2/55
MD1D-S3/50
MD1D-S3/55
MD1D-S4/50
MD1D-S4/55
MD1D-TA/50
MD1D-TA/55
MD1D-TB/50
MD1D-TB/55
MD1D-RK/50
MD1D-RK/55
DS3-S2/11N-D24K1
DS3-S2/10N-D24K1
DS3-S3/11N-D24K1
DS3-S3/10N-D24K1
DS3-S4/11N-D24K1
DS3-S4/10N-D24K1
DS3-TA/11N-D24K1
DS3-TA/11N-A00
DS3-TA/11N-A110K1
DS3-TA/10N-D24K1
DS3-TB/11N-D24K1
DS3-TB/10N-D24K1
DS3-RK/11N-D24K1
DS3-RK/11N-D220K1
DS3-RK/11N-A230K1
DS3-RK/10N-D24K1
DS3-RK/10N-A230K1
DS3-RK/10N-D24K1
DS3-RK/11N-D24K1
DS3-RK1/10N-D00
DS3-RK1/10N-D24K1
DS3-S1/10N-A230K1
DS3-S1/10N-D00
DS3-S1/10N-D24K1
DS3-S10/10N-D00
DS3-S10/10N-D24K1
DS3-S2/10N-A230K1
DS3-S2/10N-D00
DS3-S2/10N-D24K1
DS3-S3/10N-A230K1
DS3-S3/10N-D00
DS3-S3/10N-D24K1
DS3-S4/10N-A110K1
DS3-S4/10N-A230K1
DS3-S4/10N-D220K1
DS3-S4/10N-D24K1
DS3-SA1/10N-A230K1
DS3-SA2/10N-D24K1
DS3-SB1/10N-D24K1
DS3-TA/10N-A230K1
DS3-TA/10N-D220K1
DS3-TA/10N-D24K1
DS3-TA02/10N-D24K1
DS3-TA23/10N-A230K1
DS3-TB/10N-A230K1
DS3-TB/10N-D24K1
DS5-RK/12N-D24K1
DS5-S1/10V-D24K1
DS5-S1/12N-A230K1
DS5-S1/12N-D24K1
DS5-S2/12N-A230K1
DS5-S2/12N-D24K1
DS5-S3/10N-D24K1
DS5-S3/12N-A230K1
DS5-S3/12N-D24K1
DS5-S3/12N-D24K1/CM
DS5-S4/10N-A230K1
DS5-S4/12N-D24K1
DS5-TA/12N-A230K1
DS5-TA/12N-D24K1
DS5-TB02/12N-D24K1
液压传动技术在机械中的应用.
驱动机械运动的机构以及各种传动和操纵装置有多中形式。根据所用的不见和零件,可分为机械的、电气的、气动的、液压的传动装置。经常还将不同的形式组合起来运用。由于液压传动具有很多优点,使这种新技术发展的很快。液压传动应用与金属切割机床也不过四五十年的历史。航空工业在1930年以后才开始采用。特别是最近二三十年一来液压技术在各种工业中的应用越来越广泛。
1、在机床上,液压传动常应用在以下的- -些装置中
1.1进给 传动装置磨床砂轮架和工作台的进给运动大部分采用液压传动;车床、六角车床、自动车床的刀架或转塔刀架,铣床、刨床、组合机床的工作台等的进给运动也都采用液压传动。这些部件有的要求快速移动,有的要求慢速移动。有的既要求快速移动,也要求慢速移动。这些运动多半要求有较大的调速范围,要求在工作中无级调速;有的要求持续进给,有的要求间歇进给;有的要求在负载变化下速度恒定,有的要求有良好的换向性能等等。所有这些要求都是可以用液压传动来实现的。
1.2往复主题运动传动装置龙i刨床的工作台、牛头刨床或插床的滑枕,由于要求作高速往复直线运动并且要求换向冲击小、换向时间短、能耗低,因此都可以采用液压传动。
1.3仿形装置车床、铣床、刨床上的仿形加工可以采用液压伺服系统来完成。起精度可达0.01-0. 02m。此外,磨床上的成型砂轮修正装置亦可采用这系统。
1.4 辅助装置机床上的夹紧装置、齿轮箱变速操纵装置、丝杆螺母间隙消除装置、垂直移动部件平衡装置、分度装置、工件和刀具装卸装置、工件输送装置等,采用液压传动,有利于简化机床结构,提高机床自动化程度。
1.5静压支承重型机床、高速机床、高精度机床上的轴承、导轨、丝杆螺母机构等处采用液压静支承后,可以提高工作平稳性和运动精度。
2、液压传动技术在工程机械行走驱动中的应用
行走驱动系统是工程机械的重要组成部分。与工作系统相比,行走驱动系统不仅需要传输更大的功率,要求器件具有更高的效率和更长的寿命,还希望在变速调速、差速、改变输出轴旋转方向及反向传输动力等方面具有良好的能力。于是,采用何种传动方式,如何更好地满足各种工程机械行走驱动的需要,-直是工程机械行业所要面对的课题。尤其是近年来,随着我国交通、能源等基础设施建设进程的快速发展,建筑施工和资源开发规模不断扩大,工程机械在市场需求大大增强的同时,更面临着作业环境更为苛刻、工沉条件更为复杂等所带来的挑战,也进一步推动着对其行走驱动系统的深入研究。
液压传动是一种可达到传递动力、增加动力、改变速比等目的的传动方式。液压传动是以液体为工作介质,靠处于密闭容器内的液体静压力来传递力的传动方式,静压力的大小取决于负载,而负载速度的传递是按液体容积变化相等的原则进行的,其速度大小取决于流量;如果忽略损失,液压传动所传递的力与速度无关。
液压传动相比其他传统传动方式优势较为明显:1)功率重量比大,能以较轻的设备重量取得更大的力和转矩;2)惯性小,启动、制动迅速;3)无级调速,调速范围大,低速性能好;4)高响应速度;5)高负载刚度;6)可控性好,易于实现自动化,液压元件位臵可以根据设备需要进行调整。
液压传动已成为现代机械装备与机电产品的重要基础技术,在工业机械领域有着极为广泛的应用。液压系统的应用领域包括:工业生产(锻压机械、注塑机、机床、加工中心、机器人、矿山机械、包装机械等)、行走机械(工程机械、建筑机械、农业机械、汽车等)、航空航天(飞机、宇宙飞船、卫星发射装臵等)、舰船(船舶及舰艇甲板机械、操作及控制系统)、海洋工程(海洋开发平台、海底钻探、水下作业等)。以国外为例,约95%的工程机械、90%的数控加工中心、95%的自动化生产线均采用液压传动。此外,根据工业机械设备使用的液压系统压力条件不同,可按其额定压力分为低压系统(<6.3MPa)、中压系统(6.3-10MPa)、中高压系统(10-20MPa)和高压系统(>20MPa)。
液压系统主要由5个部分组成,泵、阀、油缸、马达为核心元件。典型的液压系统由动力元件(主要是液压泵)、控制元件(主要是液压阀)、执行元件(包括液压油缸、液压马达)、辅助元件(包括油箱、过滤器、蓄能器、热交换器)、工作介质(包括矿物油、乳化液、液压油等)5个部分组成,其中泵、阀、油缸、马达的技术难度大、产品附加值高、价值占比较高,是液压系统的核心元件。