Amray 124-002 Dual Ion Pump Power Supply's 5 kV ea
Shinko ER-65 Bowl Vibratory Feeder, Parts feeder vibratory base, 25" Diam W/ con
Carol 02728.41.01 10/3 SOOW Water Resistant Cable T47752
Cutler Hammer SV-9000 3 Ph AC SV Motor Drive T10413
NAS TOA DIT-723-3 TP-70E Inverter Resistance Welding Controller + Programmer T11
尽管面临着巨大的市场机遇,但席宁表示将机器人用于新药开发领域的问题和挑战也十分艰巨。“比如科学家还需要解决在生理环境中的传感和感知的问题。”他说,“在新药开发中,测量药效是一个感知的过程。另外控制问题也很重要——汽车里面的零件都是人设计的,尺寸都一样,有误差但是很小,是一个结构性的环境,对机器人做高速重复性工作是很有利的。但是在新药开发的过程中要在细胞上试验,每一个细胞的形状都不相同,位置也不一样,是非结构性的环境,如何在这样环境中准确地控制机器人,是成功将机器人用于新药开发的重要技术问题。”
“纳米机器人可以在微小的环境中进行感知和控制,可以克服由于尺度、环境给人带来的困难,然后进行操作和控制。使人类在我们看不到的空间里有所作为。”席宁说,“机器人除了代替人在我们的生活环境中有广泛的应用以外,我们再走一步,在我们看不到、摸不着的环境里,机器人同样可以起到很大作用,创造很大的价值,为人类作出很大的贡献。”
令席宁感到欣慰的是,随着机器人技术的进一步发展,在新药开发中,微纳米机器人正逐渐展现出前所未有的优势,我国在纳米机器人的研发方面也取得了重大进展。据了解,在席宁的直接领导下,中科院沈阳自动化所几年前成立了纳米机器人研究团队和实验室,并和中科院上海药物研究所以及军事医学科学院合作开展了纳米机器人在新药开发中的应用。
去年在深圳市科技创新委员会的大力支持下,席宁的团队在深圳成立了深圳市智能机器人研究院,正逐步推动纳米机器人产业化进程。
“西方发达国家的工业机器人起步较早,技术也相对成熟,尽管我国在这方面才刚刚起步,但随着机器人产业不断在新兴领域的应用,大家都站在了同一起跑线上,中国不至于让别人牵着鼻子走。我们要抓住机遇,争取在这一新的应用领域成为未来世界机器人产业的领跑者。”席宁说。
Horner Electric HE5000CS350J Operator Process Control Interface T12825
Carol 02728.41.01 10/3 SOOW Water Resistant Cable T47752
Hipotronics H306B, CS-1657 300 Series Hipot and Megohmmeter T77493
Carol 02728.41.01 10/3 SOOW Water Resistant Cable T47752