姓名:钟宁健
电话:18150117686
QQ:2851195464
外观检测面临的挑战
智能传感器,智能相机和可配置视觉系统已大大消除了开发视觉检测系统的需求。当今最常见的应用是通过即用型即插即用技术完成的。在过去的十年中,智能相机变得越来越强大,照明公司提供的产品范围也不断扩大。但是,随着软件功能的增强和价格的不断下降,软件包的互联和标准化仍然存在问题。
不同的公司对同一事物使用不同的术语。甚至像以太网这样的标准化通信在公司之间也存在巨大差异,并且在视觉行业也没有真正推动开放软件标准的推动。
当今的视觉产品可以满足大多数应用的需求。随着技术和客户需求的发展,系统集成商必须保持清醒。例如,在3D影像市场中,硬件创新先于软件创新。
尽管有很多3D传感器和摄像机可供使用,例如激光三角测量,带有伪随机码型发生器的立体声传感器等,但是为了实现快速的系统开发,开发工具链有很大差距。
例如,许多OEM当前使用开放式标准3D传感器,从头开始编写程序应用程序,或使用“封闭式”系统进行工具配置,这通常很昂贵。高速机载图像处理可能需要具有现场可编程门阵列(FPGA)的3D传感器,从而使非FPGA程序员可以在软件包中部署3D图像处理算法。
另一个挑战是从人工智能和深度学习中获取信息的能力。挑战是区分炒作与实质。现实情况是“许多人工智能和深度学习算法有时太麻烦了。
尽管视觉检测应用程序受益于深度学习算法,但是这些算法不能解决所有问题。与传统编程相比,当人们想达到99%以上的准确性所需的努力时,这一点尤其明显。尽管如此,这项技术确实占有一席之地,并将在未来几年继续发挥重要作用。
PP8946 Inverter board SEW FSE24B