PHEV的2种结构方案的比较。在PHEV功率分支方案中,PHEV驱动需要配置2个电机,相应在此结构中取消了许多组成元件,比如没有布设齿轮泵及附加的起动元件,特别是没有安装膜片式离合器和叠片式制动器,因此PHEV在电力驱动的状态下会有制动损失。此外,该方案还消除了系统对这些转换部件的控制及诸如电磁阀等灵敏部件的控制。
PHEV功率分支的结构至少需要1个用于功率切换功能的行星齿轮组,并且电动机需要1个固定传动级的速比。这种结构的变速器控制范围可与1个10档的自动变速器相媲美,其效率明显优于已知的串行解决方案。
PHEV功率分支结构采用了无级传动,可以在每种行驶速度下自动选择的发动机运行工况点,从而实现了无滞后的纯电动起步,且完全独立于内燃机运行。这种方案的优点是“负荷工况点移动”功能,它在应用2个电机时,内燃机的接合和断开并没有受到任何冲击,可以实现无差别的转换。
因为汽车在城市交通中,车辆的瞬时行驶所需要的内燃机功率是比较大的,而传统的内燃机只能在明显更好的工况点运行。采用功率分支方案可以避免部分负荷工况点效率较差的现象发生。
在并联结构中,电动行驶与内燃机/发电机行驶之间的切换可通过大量的控制元件来实现,这导致了调节损耗,这是因为功率流必须通过1个分离离合器来转换。因此,并联结构在性能上并没有任何优势。
正如试验所示,因为PHEV的变速器效率和档位是固定的,即使采用传统的动力总成来运行,其结果也不太理想。此外,并联结构的PHEV因其车辆质量增加了约300 kg,这会对能量需求产生负面影响,因为额外增加的质量会使车辆在行驶中产生较大的阻力。
从技术上分析,并联结构的PHEV方案在能量消耗和环保性方面尚不清楚是否具有优势,但从创新发展来看,这种并联混合动力汽车可视为是现有汽车的进一步发展。目前,关于PHEV的研究都忽视了不同结构PHEV 的区别,这是1种误导。
4 总结
_
上述试验表明,采用蓄电池、燃料电池和功率分支混合动力的方案比采用传统内燃机的方案效率更高。未来汽车都会采用具有无级转速和扭矩转换的驱动配置,以适用于所有驾驶需求。
当汽车的驱动装置由电动机来支持时,内燃机将只作为能源供应,而不再是“驱动发动机”,这也会使发动机出现不同的转速变化特性。以目前汽车性能相关设计的标准来看,功率分支结构型式的PHEV是1个几乎完美的解决方案。
研发人员根据日常行驶里程能计算出相应的蓄电池容量。如果行驶里程较长,可用效率较高的内燃机来驱动。作为目前由电动部件与内燃机的组合,该方案只需要1个大小合适的蓄电池就能满足这种变化,且不增加汽车质量,并能满足CO2的排放要求。
如果车辆油箱中的燃油量能替代电驱系统并实现继续行驶,那么原来须配套的基础设施,如充电桩等将不再是强制要求。
在所有研究方案中,传统内燃机的动力总成系统的效率是的。未来的汽车市场还是属于FCEV,因为它已呈现出了比传统内燃机更高的能量效率。氢作为绿色能源也符合环境保护要求。地球上的能源将日渐衰竭,之前各国广泛讨论的借助氢气生产电能来制取燃料(E-燃料)作为车辆驱动新燃料的设想,因过高的能量需求而限制了其推广应用。