转子磁铁中产生的磁通量沿着绿线所示的路径穿过定子的铁芯,从北极流向南极。线的粗细反映了磁通量的大小,线向中心的曲率反映了磁能的不平衡状态。此时,在磁通量试图流动的方向(由黑色箭头指示)在转子中产生力,以便它可以变直,或直接对齐。
在图 5.1(a)所示的状态下,所有的磁通量都指向中心,每个槽的磁能很平衡。在图 5.1(b)所示的状态下,转子顺时针旋转 7.5°,面向南极的齿之间的磁能失去平衡,产生方向和大小与黑色相匹配的扭矩箭头。
力矩方向相反,但逆时针方向产生力矩,产生的力矩较大。在图 5.1(c)所示的状态下,转子又顺时针旋转了 7.5°,面向南极的齿之间的磁能失去平衡,并在黑色箭头指示的方向上产生扭矩. 在这种状态下产生的转矩被沿相反方向行进的相同大小的转矩抵消,并且不产生齿槽转矩。
电机运行时也会产生齿槽转矩。
电机在运行时,作为负载转矩的变化,表现出平稳运行,因此在磁设计时需要保持较低。到目前为止,已经对降低齿槽转矩的方法进行了大量研究。
降低齿槽转矩的主要方法有:
适当数量的齿与适当数量的磁极组合
使转子磁体排列或磁体对角线磁化(转子倾斜)
层压定子使其扭曲(定子歪斜)
优化磁铁和定子的形状
优化磁体磁化波形
将适当数量的齿与适当数量的磁极组合是抵消齿槽转矩的最有效方法。 一般情况下,电机每转的齿槽转矩周期为磁极数和齿数中最小的公倍数。另外,最小公倍数越大,齿槽转矩越小。