产品简介
安顺易事特UPS电源办事处直销
安顺易事特UPS电源办事处直销
产品价格:¥1
上架日期:2017-08-17 14:56:25
产地:本地
发货地:北京
供应数量:不限
最少起订:1台
浏览量:183
资料下载:暂无资料下载
其他下载:暂无相关下载
详细说明

    安顺易事特UPS电源办事处直销

    为什么要用易事特UPS?
    有一个常见的错误概念,认为我们使用的市电,除了偶尔发生的断电事故,是连续而且恒定的,其实不然。市电系统作为公共电网,上面连接了成千上万各种各样的负载,其中一些较大的感性、容性、开关电源等负载不仅从电网中获得电能,还会反过来对电网本身造成影响,恶化电网或局部电网的供电品质,造成市电电压波形畸变或频率漂移。另外意外的自然和人为事故,如地震、雷击、输变电系统断路或短路,都会危害电力的正常供应,从而影响负载的正常工作。根据电力专家的测试,电网中经常发生并且对电脑和精密仪器产生干扰或破坏的问题。
        主要有以下几种:
        1、电涌(power surges):指输出电压有效值高于额定值110%,而且持续时间达一个或数个周期。电涌主要是由于在电网上连接的大型电气设备关机时,电网因突然卸载而产生的高压。
        2、高压尖脉冲(high voltage spikes):指峰值达6000v,持续时间从万分之一秒至二分之一周期(10ms)的电压。这主要由于雷击、电弧放电、静态放电或大型电气设备的开关操作而产生。
        3、暂态过电压(switching transients):指峰值电压高达 20000V,但持续时间界于百万分之一秒至万分之一秒的脉冲电压。其主要原因及可能造成的破坏类似于高压尖脉冲,只是在解决方法上会有区别。 
        4、电压下陷(power sags):指市电电压有效值介于额定值的80%至85%之间的低压状态,并且持续时间达一个到数个周期。大型设备开机,大型电动机启动,或大型电力变压器接入都可能造成这种问题。 
        5、电线噪声(electrical line noise):系指射频干扰(RFI)和电磁干扰(EFI)以及其它各种高频干扰。马达的运行、继电器的动作、马达控制器的工作、广播发射、微波辐射、以及电气风暴等,都会引起线噪声干扰。
        6、频率偏移(frequency variation):系指市电频率的变化超过3Hz以上。这主要由应急发电机的不稳定运行,或由频率不稳定的电源供电所致。 
        7、市电中断(power fai1):指市电中断并且持续至少两个周期到数小时的情况。其产生原因有:线路上的断路器跳闸、市电供应中断、电网故障。 
        对于电脑来说,显示器及主机工作都需要正常的电力供应。尤其是内存,对电源的要求更高。它是一种依赖电能的存储设备,需要不断地刷新动作来保持存储内容。一旦断电,所保存的内容立即消失。如果非正常断电,导致内存中的信息来不及保存到硬盘等存储设备上,就会造成信息因完全丢失或变得不完整而失去价值,从而浪费大量的工作精力、时间、甚至造成巨大的经济损失。而UNIX这样的操作系统,如果不正常关机,内存中的系统信息没有回写到硬盘上,还可能造成系统崩溃,无法再次启动。此外,电脑中的硬盘,虽然应用的是磁存储介质,不会因断电而损失信息,但突然的电力故障会使正在进行读写工作的硬盘物理磁头损坏,或者系统文件在维护文件系统时,造成文件分配表错误,从而造成整个硬盘的报废。另外,现在的操作系统大都能设置虚拟内存,由于突然的断电,使系统来不及取消虚拟内存,从而造成硬盘中的“信息碎片”,不仅浪费了硬盘存储空间,还会导致机器运行缓慢。电脑电源是一种整流电源,过高的电压可能会造成整流器烧毁。而电压尖脉冲和暂态过电压以及电源杂讯等干扰都可能通过整流器进入主机板,影响机器的正常工作,甚至烧毁主机线路。总之,电力问题是计算机工作的重大威胁。但是随着计算机和网络应用的日益重要和广泛,安全可靠的电源已是网络设计和管理人员不得不认真面对的重要问题。“需要是社会发展的第一推动力”,在这种背景下,UPS(不间断电源)应运而生,并伴随电力电子技术的发展,不断推陈出新,在十数年间,不仅造就了一个崭新的产业,而且随着时间的推移更将有蓬勃的发展和灿烂的前景。


    遵义易事特UPS电源办事处直销

    安顺易事特UPS电源办事处直销


    使用窍门:易事特蓄电池放电完成后注意事项
     
    易事特蓄电池放电完成后注意事项:
     
    我们在使用易事特蓄电池的时候有时候放完电之后没有及时充电,导致电池出现亏电现象,下次再重新使用的时候不能正常充上电,所以我们工程师给大家的建议是蓄电池在放电后应立即充电。
     
    一个带负载放电至低电状态的电池,在放电后72小时内必须重新充电,以避免电池损坏。UPS在闲置不用时,应断开连接的电池,否则在几天至一周的时间内会导致连接的电池过放电而损坏, 如果蓄电池在放电后很长时间没有重新充电,将会导致极板的氧化,也即是大量的晶体或固化的硫酸铅留在电池金属极板上,常用的充电方法将很难或不能重新使硫酸铅重新分解,这会导致电池过早的损坏。
     
    所以在使用完蓄电池之后,尽量第一时间进行充电,这样也可以延长电池的使用寿命。
    误区之一:“防雷器”只是防雷
    在UPS实际应用中,经常会遇到这种情况:明明是晴空万里,感觉不到任何雷电的现象,UPS内置的“防雷器”却损坏了。用户说是UPS机器质量有问题,可UPS本身却仍然可以继续正常工作。
    如果附近没有重型的动力设备,要想用“操作过电压”来说服用户,恐怕也不太容易。事实上,国外对此类普通低压配电线路上的各种电压浪涌情况,也有不少统计和报道。例如美国的一则统计表明:在10000小时内,在线间发生的各种电压值浪涌的次数,超出原工作电压一倍以上的浪涌电压次数达到800余次,其中超过1000V的就有300余次。
    可想而知,根本不需要雷电作用,要让“防雷器”动作或损坏,是完全可能的。
    误区之二:廉价“防雷器”也防雷
    不少用户出于对相关规定的考虑,要求UPS在较低价格的条件下,也要配置“防雷器”,个别厂家为了“满足”用户要求,随便装个小压敏电阻也称作“有防雷”。事实上,一般小通流容量的压敏电阻只能具备一定的过电压防护作用,如果确实需要防雷,就必须考虑足够的通流容量器件及相关的成本。

    如何寻求电池与充电管理中的最佳平衡点 
    开关模式与线性充电拓扑的对比 
    传统上来说,手持设备都使用线性充电拓扑。该方法具有诸多优势:低实施成本、设计简捷以及无高频开关的无噪声运行。但是,线性拓扑会增加系统功耗,尤其是当电池容量更高引起的充电率增加的时候。如果设计人员无法管理设计的散热问题,这就会成为一个主要缺点。 
    当 PC USB 端口作为电源时,则会出现其他一些缺点。当今在许多便携式设计上都具有 USB 充电选项,并且都可提供高达 500mA 的充电率。就线性解决方案而言,由于其效率较低,可以从 PC USB 传输的“电能”量就被大大降低,从而导致了充电时间过长。 
    这就是开关模式拓扑有用武之地的原因。开关模式拓扑的主要优势在于效率的提高。与线性稳压器不同,电源开关(或多个开关)在饱和的区域内运行,其大大降低了总体损耗。降压转换器中功率损耗的主要包括开关损耗(在电源开关中)以及滤波电感中的 DC 损耗。根据设计参数的不同,在这些应用中出现效率大大高于 95% 的情况就不足为奇了。 
    当人们听到开关模式这个术语时大多数人都会想到大型 IC、大 PowerFET 以及超大型电感! 事实上,虽然对于处理数十安培电流的应用而言确实是这样,但是对于手持设备的新一代解决方案而言情况就不一样了。新一代单体锂离子开关模式充电器采用了最高级别的芯片集成,高于 1MHz 的使用频率以最小化电感尺寸。图 1 说明了当今市场上已开始销售的此类解决方案。该硅芯片的尺寸不到 4mm2,其集成了高侧和低侧 PowerFET。由于采用了 3MHz 开关频率,该解决方案要求一个小型 1μH 电感, 其外形尺寸仅为:2×2.5×1.2mm (WxLxH)。 
    充电器的选择 
    电池充电器工具使得设计人员选择正确的充电器的过程更轻松。图 3 是 TI 网站上提供的一种工具的示例。
     

在线询盘/留言
  • 免责声明:以上所展示的信息由企业自行提供,内容的真实性、准确性和合法性由发布企业负责,本网对此不承担任何保证责任。我们原则 上建议您选择本网高级会员或VIP会员。
    0571-87774297