赛特蓄电池BT-MSE-100具体价格
赛特蓄电池容量在使用过程中不确定性产生的原因
一般说来蓄电池在用户实际的使用过程中不同于实验室做实验,对环境温度、负载等条件有严格的规定。在一个变化很大的使用环境中,一般化学产品存在的不稳定性蓄电池也不会例外,必然导致有关蓄电池参数,其中包括容量参数在内存在一定范围的不确定性变化。
前面还淡到蓄电池的容量不是单值数,其大小依从于测量的条件,即使在实验室,同一只充满电的蓄电池用2C和0.5C等不同的电流放电,容量也有很大的不同,这已是一般的常识。用户在实际使用蓄电池时,实际的负载是一个大范围变化的负载,如其在电动交通产品上存在着很大的不确定性。
使用蓄电池,如同驾驶汽车使用燃油,不可能做到汽车每天行驶的路况,距离、速度、载重等都一样,也不可能每天在十字路口等红灯的时间也一样,因此,汽车每天所耗燃油量并不一样。蓄电池的使用与此极为相似,因为使用中的蓄电池,每天在使用中遇到的不确定因素,不但是使用前难以预料的,如果联系到前面谈到的蓄电池容量测量的困难,就不难想到使用过程中也是无法准确获知的。因此,蓄电池放电使用后到底余下了多少容量是不可能精确知道的。
不仅如此,它还与以下的问题有关:蓄电池储能系统,不同于燃油车储存能量物质的方式。燃油车从油箱中取出燃油送入发动机燃烧室时的损耗极小,可以忽略。因此油箱中的剩余油量是很容易获知的。蓄电池则不然,它在提供电流输出到工作负载的同时,蓄电池内阻与接触电阻上存在着不能忽略的能量损耗。而且,这种损耗的大小,与蓄电池能量输出的大小、时间成正比的关系。并且以热能的方式向周围空间发散。一般条件下,这种发散损耗与电池周围的温度、空气流速和散热条件有关,是很难精确测量的。
因此,蓄电池每次使用后到底余下了多少容量,也就具有了很大的不确定性。这一客观存在的事实,正好有力回答了前面SOC测量法方程中负载上测得的Cr值,不能用来代表日常使用中蓄电池实际容量的消耗值,这也从另一方面对SOC测量法缺乏科学依据,作出了较为客观与合理的回答。
客观地讲,还有一点值得人们关注的是,蓄电池的能量储存与汽车的一般型式的能量储存方式,是有本质差别的。汽口的油箱一但成为产品后,除非有意外的情况发生,储存燃油物质的容积一般是不会随环境发生变化的。蓄电池则不同,成为产品后虽然外型结构看上去不会随环境有太大的变化,但储存电能的大小和能力却是随外界环境变化的。这也是蓄电池储能系统令人难以掌控的复杂问题之一。
赛特蓄电池BT-MSE-100具体价格
赛特蓄电池UPS电源行业信息
近日,在“互联网+政务”领域享有盛誉的柏克BKH系列模块化UPS电源再获用户信赖,成功应用于北京海关缉私局,为其信息机房提供延迟不低于180分钟的可靠电源保护,确保北京海关缉私局“互联网+政务”安全高效的开展。此次与北京海关缉私局的成功合作,再次彰显了柏克模块化UPS电源方案在“互联网+政务”的优秀优势与实力。
作为海关系统的重要政府部门之一,北京海关缉私局在信息化建设一直走在前列。随着“互联网+政务”的深度应用与全面实施,信息化核心业务的基础设施与关键系统不断的更新迭代,“随需扩容、高效灵活”的供电保障系统已经成为信息化建设核心业务支撑的关键所在。
据了解,本次应用于北京海关缉私局信息机房改造项目的柏克BKH系列模块化UPS电源,是一款面向中小型机房、数据中心或高密度区域而提供按需规划、模块化、可升级的电源保护解决方案,拥有业界优秀的效率、可用性和性能。其整机效率高达95%,能效、绿色节能;配置灵活,部署迅捷;单机功率涵盖15kVA~520kVA,可实现4台UPS电源系统柜并机扩展至2MW;功率模块容量涉及15kVA、20kVA、25kVA、30kVA、40kVA,涵盖广、密度高、支持热插拔;简单易用,节约空间,智能化管理,完全可以满足北京海关缉私局信息机房当前及未来业务需求,获得用户高度认可。
“能效,迅捷灵动”,柏克BKH系列模块化UPS电源方案适用于各类型数据中心或高密度区域,成功服务过乌鲁木齐铁路局调度系统、交通部信息中心、中国电子科技集团公司、巴州国土资源局、伊犁州公安局、伊犁州中医院、吴忠市委云计算数据中心、宁夏烟草信息机房、保定市公安交警指挥系统、滨州医学院烟台附属医院、吉安市国土资源局等众多用户,不愧为中小型机房、大型数据中心电力守护可以选择]品牌。
此项主要测试由逆变器供电转换到市电供电或由市电供电转换到逆变器供电时的转换特性。测试时需有存储示波器和能够模拟市电变化的调压器。
转换试验要在100%负载下进行,特别是由市电转换到UPS上时,相当于UPS的逆变器突然加载,输出波形可能在1~2个周期内有10%的变化。切换时间就是负载的断电时间。此项测试是检测转换时供电有无断点,如有断点,而且断点超过20ms就会造成信号丢失。在线式UPS一般不会有断点,但其波形幅值会有瞬时变化,要求在半周期内消失。另外,因为UPS在市电正常时,逆变器工作频率是跟踪市电频率的,一旦市电中断,逆变器频率完全由本机振荡器来控制,这一突然变化是随机性的,它与市电中断前的瞬间状态和本机振荡器的状态有关,这种频率控制的瞬态变化,可能造成输出频率变化达30%,很多负载无法适应这一变化。
2.突加或突减负载的测试
先用电源扰动分析测量空载、稳态时的相电压与频率,然后突加负载由0%至100%或突减负载由100%至0%,若UPS输出瞬变电压在-8%~+10%之间(可依据机型的该项指标而定),而且在20ms内恢复到稳态,则此UPS该项指标合格;若UPS输出瞬变电压超出此范围时,就会产生较大的浪涌电流,无论对负载还是对UPS本身都是极为不利的,该种UPS则不宜选用。
正极活性物质软化脱落
赛特蓄电池在循环使用条件下,赛特电池的失效主要是由正极活性物质(PAM)的软化、脱落所致。
赛特电池循环过程中,正、负极活性物质经历了可逆的溶解再沉积过程,改变了多孔二氧化铅电极的结构。尤其对二氧化铅电极,可能会引起表观体积的增加,改变颗粒和孔尺寸的分布,多孔二氧化铅结构中颗粒之间的机械结合性能和导电性能降低,随着循环的继续,这种情况还会进一步的恶化,结果使得该区域的活性物质软化和脱落。
(2)放电电流赛特蓄电池寿命影响
在光伏系统中,赛特蓄电池的放电电流非常小。在小电流条件下形成的PbSO4比大电流条件下形成的PbSO4转化困难得多。这是由于在小电流条件下形成的PbSO4结晶颗粒要比大电流条件下形成的PbSO4结晶颗粒粗大,粗大的PbSO4结晶颗粒减少了PbSO4的有效面积,这样在再充时加速了极板极化, 导致PbSO4转化困难,随着循环的继续,这种情况还会更加加剧,结果使得极板充不进电,最后导致赛特蓄电池寿命终止。
(3) 深度放电后赛特蓄电池容量恢复
在光伏系统中,赛特蓄电池的放电率要比赛特蓄电池应用在其它场合低,通常介于C20~C240,甚至更低。小电流下深度放电意味着极板上的活性物质将得到更充分的利用。在很多光伏系统中,通常不会发生深度放电,除非充电系统出现故障或者持续长时间的坏天气。在这种情况下,假如赛特蓄电池得不到及时的再充电,硫化题目将更加严重,进一步导致容量损失。
(4)酸分层对赛特蓄电池寿命影响
电解液分层现象是由于重力的作用在电池的充放电过程中产生的,即充电时正负极板表面都产生H2SO4,它的密度大,因重力的作用而下沉。在放电时,正负极板表面均消耗H2SO4,故表面液层密度小, 低密度的电解液顺着极板间上升,而极群上部高密度的电解液则从极群侧面向下流,电解液活动的结果造成了上部密度低、下部密度高。分层现象的产生对赛特蓄电池的使用寿命和容量均产生不利影响,加速了板栅的腐蚀和正极活物质的脱落,导致负极板硫酸盐化。
(5)电液密度对赛特蓄电池寿命的影响
电解液的浓度不仅与赛特蓄电池的容量有关,而且与正极板栅的腐蚀和负极活性物质硫酸盐化有关。过高的硫酸浓度加速了正极板栅的腐蚀和负极活性物质硫酸盐化,并导致失水加剧。
(6)板栅合金的影响
赛特蓄电池,由于长期使用,正极板栅会在电解液的作用下逐步腐蚀并长大,板栅的长大使活物质和板栅的结合性降低,从而导致赛特电池容量逐渐丧失。这种正极板栅的腐蚀和长大主要受板栅的合金组成、电解液密度以及板栅筋条外形等因素的影响。
在赛特蓄电池充电过程中,板栅和活性物质的接口上形成非导电层,这些非导电层或低导电性层在板栅和PAM界面引起了高的阻抗,导致充放电时发热和板栅四周PAM膨胀,从而限制了电池的容量(即所谓的PCL效应)。
(7)极板的厚度的影响
极板的厚度应属于赛特电池设计方面的题目,一般来说,较厚极板的循环寿命要长于较薄极板,而活性物质利用率相比之下要差一些。但有利于循环循环寿命的延长。
(8)装配压力的影
装配压力对VRLA电池寿命有很大影响,AGM隔板弹性差,组装时,极群不加压或压力过小,隔板和极板之间不能保持良好的接触,赛特电池容量大大下降。
在循环过程中,活性物质的膨胀、疏松、脱落是电池寿命提前终结的原因之一,而采用较高的装配压力可以防止活性物质在深循环过程中的膨胀。若装配压力太低,还会导致隔板过早地与极板分离,引起电液传输困难,赛特电池内阻迅速增大,轻易导致蓄电池寿命终止。因此,采用较高的装配压力是电池具有长循环寿命的保证。
(9)温度的影响
高温对赛特蓄电池失水干涸、热失控、正极板栅腐蚀和变形等都起到加速作用,低温会引起负极失效,温度波动会加速枝晶短路等等,这些都将影响赛特电池寿命。在一定环境温度范围放电时,使用容量随温度升高而增加,随温度降低而减小。在环境温度10~45℃范围内,铅蓄电池容量随温度升高而增加,如阀控密封铅蓄电池在40℃下放电电量,比在25℃下放电的电量大10%左右,但是,超过一定温度范围,则相反,如在环境温度45~50℃条件下放电,则电池容量明显减小。低温(<5℃)时,电池容量随温度降低而减小,电解液温度降低时,其粘度增大,离子运动受到较大阻力,扩散能力降低;在低温下电解液的电阻也增大,电化学的反应阻力增加,结果导致蓄电池容量下降。其次低温还会导致负极活性物质利用率下降,影响赛特蓄电池容量,如赛特电池在-10℃环境温度环境温度下放电时,负极板容量仅达35%额定容量。
通常情况下,若在25℃条件下使用时,赛特蓄电池的寿命为3年,那么30℃条件下使用时,就下降至2.5年;40℃时就下降至1.5年。即以25℃为基准,每升高10℃,其使用寿命缩短一半。