沈阳康平氧化锆氧量探头ZO系列
材料打印速度快:1-2s的时间段内,需要走完3mm的长度行程,所以选择60Hz帧频及以上帧频。温度高:材料的温度可能在1800度,需要选择高温选项(60Hz或更高的帧频时,需要配合在线分析软件)。需要在打印过程中实时温度监测:部分现场需要在实时打印监测表面的温度变化状态,及温度数据,绘制温度曲线,确认新材料的工艺温度。行业应用:珠宝、工业设计、建筑、汽车、航天、牙科和产业等领域的高校研究院所,以及研发生产单位。
氧化锆氧探头抽气取样型原理:将高温烟气引入适配器中经扩容、减压、降温后使其实际降至600℃以下,从而实现对高温气体的检测。
烟气温度650℃以上,烟气流速小于5m/s,烟气压力为负压:选抽气取样型(需要压缩空气,压力0.5-0.8MPa)由于需要将氧化锆直接插入检测气体中,对氧探头的长度有较高要求,其有效长度在500mm~1000mm左右,特殊的环境长度可达1500mm。且检测精度,工作稳定性和使用寿命都有很高的要求,因此直插式氧探头很难采用传统氧化锆氧探头的整体氧化锆管状结构,而多采取技术要求较高的氧化锆和氧化铝管连接的结构。密封性能是这种氧化锆氧探头的关键技术之一。目前上的连接方式,是将氧化锆与氧化铝管的焊接在一起,其密封性能,与采样式检测方式比,直插式检测有显而易见的优点:氧化锆直接接触气体,检测精度高,反应速度快,维护量较小。
一是由于氧化锆管是一根陶瓷管,虽然有一定的抗热振性能,但在停开过程中,因急冷、急热等温变大而可能导致锆管断裂,因此,少做一些无谓的停开操作;二是涂敷在锆管上的铂电极与氧化锆管间的热膨胀系数不一致,使用一段时间后,容易在开停过程中产生脱落现象,导致探头内阻变大,甚至损坏检测器烟气温度650℃以上,烟气流速小于5m/s,烟气压力为正压:选正压自喷取样型(不需要压缩空气)供给加热炉、锅炉等加热设备的燃料燃烧热并不是全部被利用了。以轧钢加热炉或锅炉为例,有效热是为了使物料加热或熔化(以及工艺过程的进行)所必须传入的热量,炉子烟气带走的物理热是热损失中主要部分。当鼓风量过大时(即空燃比α偏大),虽然能使燃料充分燃烧,但烟气中过剩空气量偏大,表现为烟气中O2含量高,过剩空气带走的热损失Q1值增大,导致热效率η偏低。与此同时,过量的氧气会与燃料中的S、烟气中的N2反应生成SO2、NOX等有害物质。而对于轧钢加热炉,烟气中氧含量过高还会导致钢坯氧化铁皮增厚,增加氧化烧损。当鼓风量偏低时(即空燃比α减小),表现为烟气中O2含量低,CO含量高,虽说排烟热损失小,但燃料没有完全燃烧,热损失Q2增大,热效率η也将降低。比如,高输入阻抗比低输入阻抗易受干扰,模拟电路比数字电路易受干扰,无隔离设计的设备比有隔离设计的设备易受干扰。如果我们使用功率分析仪测试的时候遇到了干扰要这么办?常见的抗干扰技术有以下几种,在使用功率分析仪测试遇到干扰时,也主要按照一下思路来解决异常。屏蔽干扰比较大时,可以考虑使用同轴电缆类的屏蔽性能较好的测试线。滤波选择合适的滤波装置,或者在设备上设置合适的滤波条件。接地接地技术相对比较复杂,但是无论在强电系统还是弱电系统中,接地都是一种比较好的屏蔽干扰的技术。
定期清洁分析仪风扇过滤网,每季度一次;环境恶劣,需要经常清理,以防止因通风不畅而导致的仪器过热现象;仪器的安装部位应当水平,远离振动源;以防止检测器不水平,而造成的样品对流不均所引起的误差;在信号线为信号电流提供正向通道时,接地线会提供回流通道。显示了单端传输通道的基本原理图。单端传输通道单端接口的主要优点可概括为简洁性和较低的实施成本。然而,它们极易受噪声拾取的影响,因为引入到信号或者接地通道的噪声直接加到接收机输入,从而引起伪接收机触发。另一个问题是串扰,特别是在一些更高频率条件下,其为邻近信号和控制线路之间的电容和电感耦合。终,由于信号线迹和接地层之间的物理差异,单端系统中产生的横向电磁波(TEM)会辐射到电路环境中,从而成为邻近电路的巨大电磁干扰源(EMI)。当电流流经负载时,与所加的电压不呈线性关系,就形成非正弦电流,即电路中有谐波产生。谐波频率是基波频率的整倍数,根据法国数学家傅立叶(M.Fourier)分析原理证明,任何重复的波形都可以分解为含有基波频率和一系列为基波倍数的谐波的正弦波分量。谐波是正弦波,每个谐波都具有不同的频率,幅度与相角。谐波可以区分为偶次与奇次性,第7次编号的为奇次谐波,而8等为偶次谐波,如基波为50Hz时,2次谐波为l00Hz,3次谐波则是150Hz。
氧化锆参数
1:氧化锆氧量分析仪分氧化锆探头和氧量变送器二部分组成。
2:探头采用防腐合金材料,氧化锆拆卸调换方便,不必外加气泵,参比气自行对流,并设有标准气接口,进行本底及预置标气检验。根据用户需求亦可配加保护套管。
3:仪表软件功能完备,全部面板操作,接线简单,电路集成、性能可靠、调试方便、表机性能达到水平。 技术参数:1、量程:0~20.6%O22、仪表精度:≤0.5%F.S3、温度显示范围:0~1300℃
4:测量温度:0~600℃(低温型) ,0~800℃(中温型) ,0~1300℃(高温型)氧化锆氧分析仪能在线实时监测烟气中的氧含量值,并能将监测到的氧含量值直接反馈给锅炉燃烧控制系统,将氧气含量控制在一个合理的范围内,从而实现上述目标USGS还努力保障科学家的安全。“关于是否在某些地区进行测量的决策很可能要根据具体情况而定。”Lundblad表示:“,第17号裂隙非常活跃,喷涌出巨大的熔岩,因此太过危险,无法靠近。仍然可以从其他相对稳定的火山口或裂隙中获取有价值的数据,以帮助预测火山再次喷发的可能性。”红外热像仪如何工作?与捕捉可见光来生成图片的常规相机不同,热像仪通过检测物体发出的红外能量(如熔岩流辐射的能量)来建立图像。斜率斜率即信号边沿时间,是波形中信号电平变换时所经历的时间,包括上升沿和下降沿。信号质量评估方法斜率评估评估CAN总线电平的信号质量,边沿时间的评估是不可或缺的,过于平缓的边沿会导致接收节点采样错误。如所示的波形,边沿明显过于平缓。信号边沿过于平缓现象斜率评估计算公式如下:由计算公式可知,当边沿过于平缓,即边沿时间占位时间的比例越大时,则评分越低;当边沿时间达到位时间的50%时,评分为0%,这时位信号已经严重畸变,影响节点对位电平的识别。
5:本底修正:-20mV~+20mV
6:环境条件:0~50℃,相对湿度< 90%
7:电源:220VAC 50Hz
8:加热温度:PID自整定控制≤±1℃(恒温点任意设定)
9:响应时间:约3S (90%响应)
10:显示形式:液晶显示
11:输出:4-20MA
12:传感器使用了日本离子镀膜技术,大幅度提高了使用寿命
13:工况在线校准:准确可靠,单标气在线校准方便,工况点可直接标定,测量
14:热惰性保护:安装方便,可热安装,对停启炉适应性强
15:多功能显示:氧含量(%); 氧电势;温度,本底电势参数数显直观方便
16:本底电势可调,调节范围宽,可随时检查元件老化等参数
17:产品系列化适应性强:可适用于燃气、燃油、燃煤各种炉型。测量温度从室温至1400度均可选择到合适的型号对于CAN总线间的电抗,我们希望并联容抗越大越好,串联感抗越小越好,因为当信号线路寄生电容和寄生电感存在时,会导致信号的上升/下降沿跳变时间变长,同时也会导致信号幅值变小从而可能导致CAN信号通信过程中显隐性误判。测量方法阻抗测量有多种可选择的方法,每种方法都有优缺点,为了达到的测量效果需要考虑测量过程中的频率覆盖范围、测量量程、测量精度和操作的方便性。而在这里,我们选择普遍使用的电流-电压直接测量法作为例子。,如果要测量生成1GHz信号时的PA三次谐波,则三次谐波的频率就是3GHz。测量谐波功率的另一种方法是使用信号分析仪的零展频(zerospan)模式在时域中进行测量。配置为零展频模式的信号分析仪可以有效地进行一系列功率带内测量,并将结果以时间的函数形式表现出来。在此模式下,可以在时域上测量选通窗口中不同频率的功率,并使用信号分析仪内置的取平均功能进行计算。使用调制激励的谐波实际上,许多PA被用来放大调制信号,而且这些PA的谐波性能需要调制激励。
定期清洁分析仪风扇过滤网,每季度一次;环境恶劣,需要经常清理,以防止因通风不畅而导致的仪器过热现象;仪器的安装部位应当水平,远离振动源;以防止检测器不水平,而造成的样品对流不均所引起的误差;如下所示,是ZDS224示波器在设置归一化截止频率为.8的低通巴特沃斯滤波器的幅频响应曲线:低通滤波器的幅频响应曲线自动测量功能。不仅可以测量通道源的波形,还可以测量经过数学运算或者数字滤波后的波形。ZDS2系列示波器标配的“真正意义”的参数测量统计会把屏幕上捕获的所有波形进行测量统计,得出当前值、值、值和平均值、标准差、测量次数。用户通过观察统计值和值可快速了解波形中可能存在的异常,通过观察平均值、标准差可快速评估信号特性。现有方法存在局限性,特别是涉及到分析振动数据(无论以何种方式获得)和确定误差源时。典型数据采集方法包括安装在机器上的简单压电传感器和手持式数据采集工具等。这些方法存在多种局限性,特别是与理想的检测与分析系统解决方案相比较,后者可以嵌入机器上或机器中,并能自治工作。下面深入讨论这些局限性及其与理想解决方案——自治无线嵌入式传感器——的对比。对完全嵌入式自治检测元件的复杂系统目标的选项分析可以分为十个不同方面,包括实现高重复度的测量、评估采集到的数据、适当的文档记录和可追溯性等,下面将对各方面进行说明并探讨可用方法与理想方法。
氧化锆氧探头应用领域
应用领域包括能耗行业,如钢铁冶金、火力发电厂、石油化工、造纸厂、食品业、纺织品业,还包括各种燃烧设备,如垃圾燃烧炉、危险废弃物烧炉、中小供热型锅炉等。
热电偶是探头内置加热器恒温控制之用,也是测量锅炉、窑炉烟道中被测气体的温度的元件,为氧量计算提供一个温度信号供给加热炉、锅炉等加热设备的燃料燃烧热并不是全部被利用了。以轧钢加热炉或锅炉为例,有效热是为了使物料加热或熔化(以及工艺过程的进行)所必须传入的热量,炉子烟气带走的物理热是热损失中主要部分。当鼓风量过大时(即空燃比α偏大),虽然能使燃料充分燃烧,但烟气中过剩空气量偏大,表现为烟气中O2含量高,过剩空气带走的热损失Q1值增大,导致热效率η偏低。与此同时,过量的氧气会与燃料中的S、烟气中的N2反应生成SO2、NOX等有害物质。而对于轧钢加热炉,烟气中氧含量过高还会导致钢坯氧化铁皮增厚,增加氧化烧损。当鼓风量偏低时(即空燃比α减小),表现为烟气中O2含量低,CO含量高,虽说排烟热损失小,但燃料没有完全燃烧,热损失Q2增大,热效率η也将降低。信息及通信技术作为新时期智能电网应具备的核心技术之一,可以说是决定整个智能电网运行建设及其发展速度的关键因素。在建设智能电网的过程中,绝大多数变电站设备及发电机、电缆、线路等都有在线监测项目。电力的在线监测是智能电网中不可缺少的重要部分。然而受电力系统分布式及实时性的特性影响,导致各种监测控制设备在信息获取方面存在着一定的时延、路径不确定性及数据包信息流丢失等问题。随着工业以太网技术、光纤技术、信息处理技术的发展,并向电力领域的渗透,在当前技术条件支持背景作用之下,工业以太网通信在运行过程当中所表现出的包括可靠性高、灵活性高、维护性高以及扩展性高在内的多种应用优势,对于优化整个电网系统各种设备元件的连接和信息传输方面都有着重要突破。拿出ES31E仪表来,此时旋转开关在OFF档位,关机状态中。测量土壤电阻率,就把旋转开关旋转到ρE档,将会显示.Ωm,测量接地电阻就旋转到RE档,接地电压就VE档。把接地棒打到土壤下,线上有钳子的一端钳住接地棒,还要再打三根接地棒。共:红,黄,绿,黑四根线。接地线的按照H,S,ES,E顺序成一直线排列,每个接地棒之间距离为5米。红,黄,绿,黑对应仪表上的颜色插口就行。按SET键设置好距离,如5米。